Datasets API¶
This guide provides detailed instructions on how to use the gfw-api-python-client to access various datasets available through the Global Fishing Watch API. Currently, it focuses on retrieving SAR (Synthetic Aperture Radar) fixed infrastructure data. The Datasets API allows you to retrieve this information, either by specifying tile coordinates or a geographic geometry. Here is a Jupyter Notebook version of this guide with more usage examples.
Note: See the Datasets, SAR (Synthetic-Aperture Radar) Data Caveats, and Terms of Use pages in the GFW API documentation for details on GFW data, API licenses, and rate limits.
Prerequisites¶
Before using the
gfw-api-python-client, ensure it is installed (see the Getting Started guide) and that you have obtained an API access token from the Global Fishing Watch API portal.
Getting Started¶
To interact with the Datasets endpoints, you first need to instantiate the gfw.Client and then access the datasets resource:
import os
import gfwapiclient as gfw
access_token = os.environ.get(
"GFW_API_ACCESS_TOKEN",
"<OR_PASTE_YOUR_GFW_API_ACCESS_TOKEN_HERE>",
)
gfw_client = gfw.Client(
access_token=access_token,
)
The gfw_client.datasets object provides methods to retrieve data from various datasets. The get_sar_fixed_infrastructure method allows you to access SAR fixed infrastructure data. This method returns a result object, which offers convenient ways to access the data as Pydantic models using .data() or as pandas DataFrames using .df().
Tip: Use IPython or Python 3.11+ with
python -m asyncioto rungfw-api-python-clientcode interactively, as these environments support executingasync/awaitexpressions directly in the console.
Retrieving SAR Fixed Infrastructure Data by Tile Coordinates (get_sar_fixed_infrastructure with z, x, y)¶
You can retrieve SAR fixed infrastructure data for a specific tile using its zoom level (z), x-coordinate (x), and y-coordinate (y).
z = 1
x = 0
y = 1
sar_infrastructure_result = await gfw_client.datasets.get_sar_fixed_infrastructure(
z=z, x=x, y=y
)
Access the list of SAR fixed infrastructure items as Pydantic models¶
sar_infrastructure_data = sar_infrastructure_result.data()
sar_infrastructure = sar_infrastructure_data[-1]
print(
(
sar_infrastructure.structure_id,
sar_infrastructure.label,
sar_infrastructure.lat,
sar_infrastructure.lon,
)
)
print(sar_infrastructure.model_dump())
Output:
(646348, 'oil', -39.15082587013905, 177.96658840984458)
Access the SAR fixed infrastructure items as a DataFrame¶
sar_infrastructure_df = sar_infrastructure_result.df()
print(sar_infrastructure_df.info())
print(sar_infrastructure_df.head())
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1156 entries, 0 to 1155
Data columns (total 7 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 structure_id 1156 non-null int64
1 lat 1156 non-null float64
2 lon 1156 non-null float64
3 label 1156 non-null object
4 structure_start_date 1156 non-null datetime64[ns, UTC]
5 structure_end_date 857 non-null datetime64[ns, UTC]
6 label_confidence 1156 non-null object
dtypes: datetime64[ns, UTC](2), float64(2), int64(1), object(2)
memory usage: 63.3+ KB
Retrieving SAR Fixed Infrastructure Data by Geometry (get_sar_fixed_infrastructure with geometry)¶
You can also retrieve SAR fixed infrastructure data for a specific geographic area defined by a GeoJSON geometry.
geometry = {
"type": "Polygon",
"coordinates": [
[
[-180.0, -85.0511287798066],
[-180.0, 0.0],
[0.0, 0.0],
[0.0, -85.0511287798066],
[-180.0, -85.0511287798066],
]
],
}
sar_infrastructure_result = await gfw_client.datasets.get_sar_fixed_infrastructure(
geometry=geometry
)
Access the list of SAR fixed infrastructure items as Pydantic models¶
sar_infrastructure_data = sar_infrastructure_result.data()
sar_infrastructure = sar_infrastructure_data[-1]
print(
(
sar_infrastructure.structure_id,
sar_infrastructure.label,
sar_infrastructure.lat,
sar_infrastructure.lon,
)
)
print(sar_infrastructure.model_dump())
Output:
(646348, 'oil', -39.15082587013905, 177.96658840984458)
Access the SAR fixed infrastructure items as a DataFrame¶
sar_infrastructure_df = sar_infrastructure_result.df()
print(sar_infrastructure_df.info())
print(sar_infrastructure_df.head())
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1156 entries, 0 to 1155
Data columns (total 7 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 structure_id 1156 non-null int64
1 lat 1156 non-null float64
2 lon 1156 non-null float64
3 label 1156 non-null object
4 structure_start_date 1156 non-null datetime64[ns, UTC]
5 structure_end_date 857 non-null datetime64[ns, UTC]
6 label_confidence 1156 non-null object
dtypes: datetime64[ns, UTC](2), float64(2), int64(1), object(2)
memory usage: 63.3+ KB
Next Steps¶
Explore the Usage Guides and Workflow Guides for other API resources. Check out the following resources: