Datasets API¶
This guide provides detailed instructions on how to use the gfw-api-python-client to access various datasets available through the Global Fishing Watch API. Currently, it focuses on retrieving SAR (Synthetic Aperture Radar) fixed infrastructure data. The Datasets API allows you to retrieve this information, either by specifying tile coordinates
or a geographic geometry
. Here is a Jupyter Notebook version of this guide with more usage examples.
Prerequisites¶
You have installed the
gfw-api-python-client
. Refer to the Getting Started guide for installation instructions.
Getting Started¶
To interact with the Datasets endpoints, you first need to instantiate the gfw.Client
and then access the datasets
resource:
import os
import gfwapiclient as gfw
access_token = os.environ.get(
"GFW_API_ACCESS_TOKEN",
"<OR_PASTE_YOUR_GFW_API_ACCESS_TOKEN_HERE>",
)
gfw_client = gfw.Client(
access_token=access_token,
)
The gfw_client.datasets
object provides methods to retrieve data from various datasets. The get_sar_fixed_infrastructure
method allows you to access SAR fixed infrastructure data. This method returns a result
object, which offers convenient ways to access the data as Pydantic models using .data()
or as pandas DataFrames using .df()
.
Retrieving SAR Fixed Infrastructure Data by Tile Coordinates (get_sar_fixed_infrastructure
with z, x, y)¶
You can retrieve SAR fixed infrastructure data for a specific tile using its zoom level (z
), x-coordinate (x
), and y-coordinate (y
).
z = 1
x = 0
y = 1
sar_infrastructure_result = await gfw_client.datasets.get_sar_fixed_infrastructure(
z=z, x=x, y=y
)
Access the list of SAR fixed infrastructure items as Pydantic models¶
sar_infrastructure_data = sar_infrastructure_result.data()
sar_infrastructure = sar_infrastructure_data[-1]
print(
(
sar_infrastructure.structure_id,
sar_infrastructure.label,
sar_infrastructure.lat,
sar_infrastructure.lon,
)
)
print(sar_infrastructure.model_dump())
Output:
(646348, 'oil', -39.15082587013905, 177.96658840984458)
Access the SAR fixed infrastructure items as a DataFrame¶
sar_infrastructure_df = sar_infrastructure_result.df()
print(sar_infrastructure_df.info())
print(sar_infrastructure_df.head())
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1106 entries, 0 to 1105
Data columns (total 7 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 structure_id 1106 non-null int64
1 lat 1106 non-null float64
2 lon 1106 non-null float64
3 label 1106 non-null object
4 structure_start_date 1106 non-null datetime64[ns, UTC]
5 structure_end_date 831 non-null datetime64[ns, UTC]
6 label_confidence 1106 non-null object
dtypes: datetime64[ns, UTC](2), float64(2), int64(1), object(2)
memory usage: 60.6+ KB
Retrieving SAR Fixed Infrastructure Data by Geometry (get_sar_fixed_infrastructure
with geometry)¶
You can also retrieve SAR fixed infrastructure data for a specific geographic area defined by a GeoJSON geometry.
geometry = {
"type": "Polygon",
"coordinates": [
[
[-180.0, -85.0511287798066],
[-180.0, 0.0],
[0.0, 0.0],
[0.0, -85.0511287798066],
[-180.0, -85.0511287798066],
]
],
}
sar_infrastructure_result = await gfw_client.datasets.get_sar_fixed_infrastructure(
geometry=geometry
)
Access the list of SAR fixed infrastructure items as Pydantic models¶
sar_infrastructure_data = sar_infrastructure_result.data()
sar_infrastructure = sar_infrastructure_data[-1]
print(
(
sar_infrastructure.structure_id,
sar_infrastructure.label,
sar_infrastructure.lat,
sar_infrastructure.lon,
)
)
print(sar_infrastructure.model_dump())
Output:
(646348, 'oil', -39.15082587013905, 177.96658840984458)
Access the SAR fixed infrastructure items as a DataFrame¶
sar_infrastructure_df = sar_infrastructure_result.df()
print(sar_infrastructure_df.info())
print(sar_infrastructure_df.head())
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1106 entries, 0 to 1105
Data columns (total 7 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 structure_id 1106 non-null int64
1 lat 1106 non-null float64
2 lon 1106 non-null float64
3 label 1106 non-null object
4 structure_start_date 1106 non-null datetime64[ns, UTC]
5 structure_end_date 831 non-null datetime64[ns, UTC]
6 label_confidence 1106 non-null object
dtypes: datetime64[ns, UTC](2), float64(2), int64(1), object(2)
memory usage: 60.6+ KB
Next Steps¶
Explore the Usage Guides for other API resources. Check out the following resources: