4Wings API¶
This guide provides detailed instructions on how to use the gfw-api-python-client to access the 4Wings API, which is designed for generating reports and statistics on activities within specified regions. This API is particularly useful for creating data visualizations related to fishing effort and other vessel activities. Here is a Jupyter Notebook version of this guide with more usage examples.
Prerequisites¶
You have installed the
gfw-api-python-client
. Refer to the Getting Started guide for installation instructions.
Getting Started¶
To interact with the 4Wings endpoints, you first need to instantiate the gfw.Client
and then access the fourwings
resource:
import os
import gfwapiclient as gfw
access_token = os.environ.get(
"GFW_API_ACCESS_TOKEN",
"<OR_PASTE_YOUR_GFW_API_ACCESS_TOKEN_HERE>",
)
gfw_client = gfw.Client(
access_token=access_token,
)
The gfw_client.fourwings
object provides methods to generate reports, retrieve the last generated report, and get global fishing effort statistics. These methods return a result
object, which offers convenient ways to access the data as Pydantic models using .data()
or as pandas DataFrames using .df()
.
Creating a Report (create_report
)¶
The create_report()
method allows you to generate a report for a specified geographic region, based on the provided datasets and parameters.
report_result = await gfw_client.fourwings.create_report(
spatial_resolution="LOW",
temporal_resolution="MONTHLY",
group_by="GEARTYPE",
datasets=["public-global-fishing-effort:latest"],
start_date="2022-01-01",
end_date="2022-05-01",
region={
"dataset": "public-eez-areas",
"id": "5690",
},
)
Access the report data as Pydantic models¶
report_data = report_result.data()
report = report_data[-1]
print((report.date, report.hours, report.lat, report.lon))
print(report.model_dump())
Output:
('2022-04', 3.126388888888889, 52.0, 155.2)
Access the report data as a DataFrame¶
report_df = report_result.df()
print(report_df.info())
print(report_df[["date", "hours", "lat", "lon"]].head())
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 39715 entries, 0 to 39714
Data columns (total 20 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 39715 non-null object
1 detections 0 non-null object
2 flag 0 non-null object
3 gear_type 39715 non-null object
4 hours 39715 non-null float64
5 vessel_ids 39715 non-null int64
6 vessel_id 0 non-null object
7 vessel_type 0 non-null object
8 entry_timestamp 0 non-null object
9 exit_timestamp 0 non-null object
10 first_transmission_date 0 non-null object
11 last_transmission_date 0 non-null object
12 imo 0 non-null object
13 mmsi 0 non-null object
14 call_sign 0 non-null object
15 dataset 0 non-null object
16 report_dataset 39715 non-null object
17 ship_name 0 non-null object
18 lat 39715 non-null float64
19 lon 39715 non-null float64
dtypes: float64(3), int64(1), object(16)
memory usage: 6.1+ MB
Reference Data¶
The 4Wings API often requires specifying geographic regions. You can use the Reference Data API to retrieve the dataset
and id
of various regions (e.g., EEZs, MPAs, RFMOs) that can then be used in the create_report()
method.
Next Steps¶
Explore the Usage Guides for other API resources to understand how you can combine the reporting and statistical capabilities of the 4Wings API with vessel information, event data, and more. Check out the following resources: