4Wings API¶
This guide provides detailed instructions on how to use the gfw-api-python-client to access the 4Wings API, which is designed for generating reports and statistics on activities within specified regions. This API is particularly useful for creating data visualizations related to fishing effort and other vessel activities. Here is a Jupyter Notebook version of this guide with more usage examples.
Note: See the Datasets, AIS Apparent Fishing Effort Data Caveats, AIS Vessel Presence Data Caveats, SAR Vessel Detections Data Caveats, and Terms of Use pages in the GFW API documentation for details on GFW data, API licenses, and rate limits.
Prerequisites¶
Before using the
gfw-api-python-client, ensure it is installed (see the Getting Started guide) and that you have obtained an API access token from the Global Fishing Watch API portal.
Getting Started¶
To interact with the 4Wings endpoints, you first need to instantiate the gfw.Client and then access the fourwings resource:
import os
import gfwapiclient as gfw
access_token = os.environ.get(
"GFW_API_ACCESS_TOKEN",
"<OR_PASTE_YOUR_GFW_API_ACCESS_TOKEN_HERE>",
)
gfw_client = gfw.Client(
access_token=access_token,
)
The gfw_client.fourwings object provides methods to generate reports, retrieve the last generated report, and get global fishing effort statistics. These methods return a result object, which offers convenient ways to access the data as Pydantic models using .data() or as pandas DataFrames using .df().
Tip: Use IPython or Python 3.11+ with
python -m asyncioto rungfw-api-python-clientcode interactively, as these environments support executingasync/awaitexpressions directly in the console.
Creating a Fishing Effort Report (create_fishing_effort_report)¶
Generates AIS (Automatic Identification System) apparent fishing effort reports to visualize fishing activity. Please learn more about apparent fishing effort here and check its data caveats here.
fishing_effort_report_result = await gfw_client.fourwings.create_fishing_effort_report(
spatial_resolution="LOW",
temporal_resolution="MONTHLY",
group_by="FLAG",
start_date="2022-01-01",
end_date="2022-05-01",
region={
"dataset": "public-eez-areas",
"id": "5690",
},
)
Access the report data as Pydantic models¶
fishing_effort_report_data = fishing_effort_report_result.data()
fishing_effort_report_item = fishing_effort_report_data[-1]
print((
fishing_effort_report_item.date,
fishing_effort_report_item.flag,
fishing_effort_report_item.hours,
fishing_effort_report_item.vessel_ids,
fishing_effort_report_item.lat,
fishing_effort_report_item.lon,
))
Output:
('2022-03', 'RUS', 7.109166666666667, 3, 75.8, 44.0)
Access the report data as a DataFrame¶
fishing_effort_report_df = fishing_effort_report_result.df()
print(fishing_effort_report_df.info())
print(fishing_effort_report_df[["date", "flag", "hours", "vessel_ids", "lat", "lon"]].head())
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32271 entries, 0 to 32270
Data columns (total 20 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 32271 non-null object
1 detections 0 non-null object
2 flag 32271 non-null object
3 gear_type 0 non-null object
4 hours 32271 non-null float64
5 vessel_ids 32271 non-null int64
6 vessel_id 0 non-null object
7 vessel_type 0 non-null object
8 entry_timestamp 0 non-null object
9 exit_timestamp 0 non-null object
10 first_transmission_date 0 non-null object
11 last_transmission_date 0 non-null object
12 imo 0 non-null object
13 mmsi 0 non-null object
14 call_sign 0 non-null object
15 dataset 0 non-null object
16 report_dataset 32271 non-null object
17 ship_name 0 non-null object
18 lat 32271 non-null float64
19 lon 32271 non-null float64
dtypes: float64(3), int64(1), object(16)
memory usage: 4.9+ MB
Creating an AIS Presence Report (create_ais_presence_report)¶
Generates AIS (Automatic Identification System) vessel presence reports to visualize movement patterns of any vessel type. Please learn more about AIS vessel presence here and check its data caveats here.
Disclaimer: AIS vessel presence is one of the largest datasets available. To prevent timeouts and ensure optimal performance, keep requests manageable: prefer simple, small regions and shorter time ranges (e.g., a few days).
ais_presence_report_result = await gfw_client.fourwings.create_ais_presence_report(
spatial_resolution="LOW",
temporal_resolution="MONTHLY",
group_by="FLAG",
start_date="2022-01-01",
end_date="2022-05-01",
region={
"dataset": "public-eez-areas",
"id": "5690",
},
)
Access the report data as Pydantic models¶
ais_presence_report_data = ais_presence_report_result.data()
ais_presence_report_item = ais_presence_report_data[-1]
print((
ais_presence_report_item.date,
ais_presence_report_item.flag,
ais_presence_report_item.hours,
ais_presence_report_item.vessel_ids,
ais_presence_report_item.lat,
ais_presence_report_item.lon,
))
Output:
('2022-03', 'RUS', 1.0, 1, 52.1, 153.2)
Access the report data as a DataFrame¶
ais_presence_report_df = ais_presence_report_result.df()
print(ais_presence_report_df.info())
print(ais_presence_report_df[["date", "flag", "hours", "vessel_ids", "lat", "lon"]].head())
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 274333 entries, 0 to 274332
Data columns (total 20 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 274333 non-null object
1 detections 0 non-null object
2 flag 274333 non-null object
3 gear_type 0 non-null object
4 hours 274333 non-null float64
5 vessel_ids 274333 non-null int64
6 vessel_id 0 non-null object
7 vessel_type 0 non-null object
8 entry_timestamp 0 non-null object
9 exit_timestamp 0 non-null object
10 first_transmission_date 0 non-null object
11 last_transmission_date 0 non-null object
12 imo 0 non-null object
13 mmsi 0 non-null object
14 call_sign 0 non-null object
15 dataset 0 non-null object
16 report_dataset 274333 non-null object
17 ship_name 0 non-null object
18 lat 274333 non-null float64
19 lon 274333 non-null float64
dtypes: float64(3), int64(1), object(16)
memory usage: 41.9+ MB
Creating a SAR Vessel Detections Report (create_sar_presence_report)¶
Generates SAR (Synthetic-Aperture Radar) vessel detections reports to identify vessels detected via radar, including non-broadcasting (possible "dark") vessels. Please learn more about SAR vessel detections here and check its data caveats here.
Important: AIS vessel presence shows where vessels reported their positions via the Automatic Identification System (AIS). SAR vessel detection shows where Synthetic Aperture Radar (SAR) satellites detected vessels on the ocean surface, even if they weren’t transmitting AIS.
sar_presence_report_result = await gfw_client.fourwings.create_sar_presence_report(
spatial_resolution="LOW",
temporal_resolution="MONTHLY",
group_by="GEARTYPE",
start_date="2022-01-01",
end_date="2022-05-01",
region={
"dataset": "public-eez-areas",
"id": "5690",
},
)
Access the report data as Pydantic models¶
sar_presence_report_data = sar_presence_report_result.data()
sar_presence_report_item = sar_presence_report_data[-1]
print((
sar_presence_report_item.date,
sar_presence_report_item.flag,
sar_presence_report_item.detections,
sar_presence_report_item.vessel_ids,
sar_presence_report_item.lat,
sar_presence_report_item.lon,
))
Output:
('2022-04', '', 1, 1, 46.6, 142.6)
Access the report data as a DataFrame¶
sar_presence_report_df = sar_presence_report_result.df()
print(sar_presence_report_df.info())
print(sar_presence_report_df[["date", "flag", "detections", "vessel_ids", "lat", "lon"]].head())
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3995 entries, 0 to 3994
Data columns (total 20 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 3995 non-null object
1 detections 3995 non-null int64
2 flag 3995 non-null object
3 gear_type 0 non-null object
4 hours 0 non-null object
5 vessel_ids 3995 non-null int64
6 vessel_id 0 non-null object
7 vessel_type 0 non-null object
8 entry_timestamp 0 non-null object
9 exit_timestamp 0 non-null object
10 first_transmission_date 0 non-null object
11 last_transmission_date 0 non-null object
12 imo 0 non-null object
13 mmsi 0 non-null object
14 call_sign 0 non-null object
15 dataset 0 non-null object
16 report_dataset 3995 non-null object
17 ship_name 0 non-null object
18 lat 3995 non-null float64
19 lon 3995 non-null float64
dtypes: float64(2), int64(2), object(16)
memory usage: 624.3+ KB
Creating a Report (create_report)¶
Generates a report for any supported datasets, using fully customizable parameters. Please check the data caveats here.
Note: AIS vessel presence (i.e.,
"public-global-sar-presence:latest"dataset) does not support"GEARTYPE"or"FLAGANDGEARTYPE"asgroup_bycriteria.
report_result = await gfw_client.fourwings.create_report(
spatial_resolution="LOW",
temporal_resolution="MONTHLY",
group_by="FLAG",
datasets=[
"public-global-fishing-effort:latest",
"public-global-sar-presence:latest",
"public-global-presence:latest",
],
start_date="2022-01-01",
end_date="2022-05-01",
region={
"dataset": "public-eez-areas",
"id": "5690",
},
)
Access the report data as Pydantic models¶
report_data = report_result.data()
report_item = report_data[-1]
print((
report_item.date,
report_item.flag,
report_item.hours,
report_item.vessel_ids,
report_item.lat,
report_item.lon,
))
print(report_item.model_dump())
Output:
('2022-03', 'RUS', 1.0, 1, 52.1, 153.2)
Access the report data as a DataFrame¶
report_df = report_result.df()
print(report_df.info())
print(report_df[["date", "flag", "hours", "lat", "lon"]].head())
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 310599 entries, 0 to 310598
Data columns (total 20 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 date 310599 non-null object
1 detections 3995 non-null float64
2 flag 310599 non-null object
3 gear_type 0 non-null object
4 hours 306604 non-null float64
5 vessel_ids 310599 non-null int64
6 vessel_id 0 non-null object
7 vessel_type 0 non-null object
8 entry_timestamp 0 non-null object
9 exit_timestamp 0 non-null object
10 first_transmission_date 0 non-null object
11 last_transmission_date 0 non-null object
12 imo 0 non-null object
13 mmsi 0 non-null object
14 call_sign 0 non-null object
15 dataset 0 non-null object
16 report_dataset 310599 non-null object
17 ship_name 0 non-null object
18 lat 310599 non-null float64
19 lon 310599 non-null float64
dtypes: float64(4), int64(1), object(15)
memory usage: 47.4+ MB
Reference Data¶
The 4Wings API often requires specifying geographic regions. You can use the Reference Data API to retrieve the dataset and id of various regions (e.g., EEZs, MPAs, RFMOs) that can then be used in the create_report() method.
Next Steps¶
Explore the Usage Guides and Workflow Guides for other API resources to understand how you can combine the reporting and statistical capabilities of the 4Wings API with vessel information, event data, and more. Check out the following resources: